Host immunity, nutrition and coinfection alter longitudinal infection patterns of schistosomes in a free ranging African buffalo population
نویسندگان
چکیده
Schistosomes are trematode parasites of global importance, causing infections in millions of people, livestock, and wildlife. Most studies on schistosomiasis, involve human subjects; as such, there is a paucity of longitudinal studies investigating parasite dynamics in the absence of intervention. As a consequence, despite decades of research on schistosomiasis, our understanding of its ecology in natural host populations is centered around how environmental exposure and acquired immunity influence acquisition of parasites, while very little is known about the influence of host physiology, coinfection and clearance in the absence of drug treatment. We used a 4-year study in free-ranging African buffalo to investigate natural schistosome dynamics. We asked (i) what are the spatial and temporal patterns of schistosome infections; (ii) how do parasite burdens vary over time within individual hosts; and (iii) what host factors (immunological, physiological, co-infection) and environmental factors (season, location) explain patterns of schistosome acquisition and loss in buffalo? Schistosome infections were common among buffalo. Microgeographic structure explained some variation in parasite burdens among hosts, indicating transmission hotspots. Overall, parasite burdens ratcheted up over time; however, gains in schistosome abundance in the dry season were partially offset by losses in the wet season, with some hosts demonstrating complete clearance of infection. Variation among buffalo in schistosome loss was associated with immunologic and nutritional factors, as well as co-infection by the gastrointestinal helminth Cooperia fuelleborni. Our results demonstrate that schistosome infections are surprisingly dynamic in a free-living mammalian host population, and point to a role for host factors in driving variation in parasite clearance, but not parasite acquisition which is driven by seasonal changes and spatial habitat utilization. Our study illustrates the power of longitudinal studies for discovering mechanisms underlying parasite dynamics in individual animals and populations.
منابع مشابه
Enemies and turncoats: bovine tuberculosis exposes pathogenic potential of Rift Valley fever virus in a common host, African buffalo (Syncerus caffer).
The ubiquity and importance of parasite co-infections in populations of free-living animals is beginning to be recognized, but few studies have demonstrated differential fitness effects of single infection versus co-infection in free-living populations. We investigated interactions between the emerging bacterial disease bovine tuberculosis (BTB) and the previously existing viral disease Rift Va...
متن کاملTick infestation patterns in free ranging African buffalo (Syncercus caffer): Effects of host innate immunity and niche segregation among tick species☆
Ticks are of vast importance to livestock health, and contribute to conflicts between wildlife conservation and agricultural interests; but factors driving tick infestation patterns on wild hosts are not well understood. We studied tick infestation patterns on free-ranging African buffalo (Syncercus caffer), asking (i) is there evidence for niche segregation among tick species?; and (ii) how do...
متن کاملNematode–coccidia parasite co-infections in African buffalo: Epidemiology and associations with host condition and pregnancy
Co-infections are common in natural populations and interactions among co-infecting parasites can significantly alter the transmission and host fitness costs of infection. Because both exposure and susceptibility vary over time, predicting the consequences of parasite interactions on host fitness and disease dynamics may require detailed information on their effects across different environment...
متن کاملHidden consequences of living in a wormy world: nematode‐induced immune suppression facilitates tuberculosis invasion in African buffalo.
Most hosts are infected with multiple parasites, and responses of the immune system to co-occurring parasites may influence disease spread. Helminth infection can bias the host immune response toward a T-helper type 2 (Th2) over a type 1 (Th1) response, impairing the host’s ability to control concurrent intracellular microparasite infections and potentially modifying disease dynamics. In humans...
متن کاملEpidemiology. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales.
Parasitic worms modulate host immune responses in ways that affect microbial co-infections. For this reason, anthelmintic therapy may be a potent tool for indirectly controlling microbial pathogens. However, the population-level consequences of this type of intervention on co-infecting microbes are unknown. We evaluated the effects of anthelmintic treatment on bovine tuberculosis (BTB) acquisit...
متن کامل